|
|
|
|
// Boost rational.hpp header file ------------------------------------------//
|
|
|
|
|
|
|
|
|
|
// (C) Copyright Paul Moore 1999. Permission to copy, use, modify, sell and
|
|
|
|
|
// distribute this software is granted provided this copyright notice appears
|
|
|
|
|
// in all copies. This software is provided "as is" without express or
|
|
|
|
|
// implied warranty, and with no claim as to its suitability for any purpose.
|
|
|
|
|
|
|
|
|
|
// See http://www.boost.org/libs/rational for documentation.
|
|
|
|
|
|
|
|
|
|
// Credits:
|
|
|
|
|
// Thanks to the boost mailing list in general for useful comments.
|
|
|
|
|
// Particular contributions included:
|
|
|
|
|
// Andrew D Jewell, for reminding me to take care to avoid overflow
|
|
|
|
|
// Ed Brey, for many comments, including picking up on some dreadful typos
|
|
|
|
|
// Stephen Silver contributed the test suite and comments on user-defined
|
|
|
|
|
// IntType
|
|
|
|
|
// Nickolay Mladenov, for the implementation of operator+=
|
|
|
|
|
|
|
|
|
|
// Revision History
|
|
|
|
|
// 05 Nov 06 Change rational_cast to not depend on division between different
|
|
|
|
|
// types (Daryle Walker)
|
|
|
|
|
// 04 Nov 06 Off-load GCD and LCM to Boost.Math; add some invariant checks;
|
|
|
|
|
// add std::numeric_limits<> requirement to help GCD (Daryle Walker)
|
|
|
|
|
// 31 Oct 06 Recoded both operator< to use round-to-negative-infinity
|
|
|
|
|
// divisions; the rational-value version now uses continued fraction
|
|
|
|
|
// expansion to avoid overflows, for bug #798357 (Daryle Walker)
|
|
|
|
|
// 20 Oct 06 Fix operator bool_type for CW 8.3 (Joaqu<71>n M L<>pez Mu<4D>oz)
|
|
|
|
|
// 18 Oct 06 Use EXPLICIT_TEMPLATE_TYPE helper macros from Boost.Config
|
|
|
|
|
// (Joaqu<71>n M L<>pez Mu<4D>oz)
|
|
|
|
|
// 27 Dec 05 Add Boolean conversion operator (Daryle Walker)
|
|
|
|
|
// 28 Sep 02 Use _left versions of operators from operators.hpp
|
|
|
|
|
// 05 Jul 01 Recode gcd(), avoiding std::swap (Helmut Zeisel)
|
|
|
|
|
// 03 Mar 01 Workarounds for Intel C++ 5.0 (David Abrahams)
|
|
|
|
|
// 05 Feb 01 Update operator>> to tighten up input syntax
|
|
|
|
|
// 05 Feb 01 Final tidy up of gcd code prior to the new release
|
|
|
|
|
// 27 Jan 01 Recode abs() without relying on abs(IntType)
|
|
|
|
|
// 21 Jan 01 Include Nickolay Mladenov's operator+= algorithm,
|
|
|
|
|
// tidy up a number of areas, use newer features of operators.hpp
|
|
|
|
|
// (reduces space overhead to zero), add operator!,
|
|
|
|
|
// introduce explicit mixed-mode arithmetic operations
|
|
|
|
|
// 12 Jan 01 Include fixes to handle a user-defined IntType better
|
|
|
|
|
// 19 Nov 00 Throw on divide by zero in operator /= (John (EBo) David)
|
|
|
|
|
// 23 Jun 00 Incorporate changes from Mark Rodgers for Borland C++
|
|
|
|
|
// 22 Jun 00 Change _MSC_VER to BOOST_MSVC so other compilers are not
|
|
|
|
|
// affected (Beman Dawes)
|
|
|
|
|
// 6 Mar 00 Fix operator-= normalization, #include <string> (Jens Maurer)
|
|
|
|
|
// 14 Dec 99 Modifications based on comments from the boost list
|
|
|
|
|
// 09 Dec 99 Initial Version (Paul Moore)
|
|
|
|
|
|
|
|
|
|
#ifndef BOOST_RATIONAL_HPP
|
|
|
|
|
#define BOOST_RATIONAL_HPP
|
|
|
|
|
|
|
|
|
|
#include <iostream> // for std::istream and std::ostream
|
|
|
|
|
#include <iomanip> // for std::noskipws
|
|
|
|
|
#include <stdexcept> // for std::domain_error
|
|
|
|
|
#include <string> // for std::string implicit constructor
|
|
|
|
|
#include <boost/operators.hpp> // for boost::addable etc
|
|
|
|
|
#include <cstdlib> // for std::abs
|
|
|
|
|
#include <boost/call_traits.hpp> // for boost::call_traits
|
|
|
|
|
#include <boost/config.hpp> // for BOOST_NO_STDC_NAMESPACE, BOOST_MSVC
|
|
|
|
|
#include <boost/detail/workaround.hpp> // for BOOST_WORKAROUND
|
|
|
|
|
#include <boost/assert.hpp> // for BOOST_ASSERT
|
|
|
|
|
#include <boost/math/common_factor_rt.hpp> // for boost::math::gcd, lcm
|
|
|
|
|
#include <limits> // for std::numeric_limits
|
|
|
|
|
#include <boost/static_assert.hpp> // for BOOST_STATIC_ASSERT
|
|
|
|
|
|
|
|
|
|
// Control whether depreciated GCD and LCM functions are included (default: yes)
|
|
|
|
|
#ifndef BOOST_CONTROL_RATIONAL_HAS_GCD
|
|
|
|
|
#define BOOST_CONTROL_RATIONAL_HAS_GCD 1
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
namespace boost {
|
|
|
|
|
|
|
|
|
|
#if BOOST_CONTROL_RATIONAL_HAS_GCD
|
|
|
|
|
template <typename IntType>
|
|
|
|
|
IntType gcd(IntType n, IntType m)
|
|
|
|
|
{
|
|
|
|
|
// Defer to the version in Boost.Math
|
|
|
|
|
return math::gcd( n, m );
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template <typename IntType>
|
|
|
|
|
IntType lcm(IntType n, IntType m)
|
|
|
|
|
{
|
|
|
|
|
// Defer to the version in Boost.Math
|
|
|
|
|
return math::lcm( n, m );
|
|
|
|
|
}
|
|
|
|
|
#endif // BOOST_CONTROL_RATIONAL_HAS_GCD
|
|
|
|
|
|
|
|
|
|
class bad_rational : public std::domain_error
|
|
|
|
|
{
|
|
|
|
|
public:
|
|
|
|
|
explicit bad_rational() : std::domain_error("bad rational: zero denominator") {}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
template <typename IntType>
|
|
|
|
|
class rational;
|
|
|
|
|
|
|
|
|
|
template <typename IntType>
|
|
|
|
|
rational<IntType> abs(const rational<IntType>& r);
|
|
|
|
|
|
|
|
|
|
template <typename IntType>
|
|
|
|
|
class rational :
|
|
|
|
|
less_than_comparable < rational<IntType>,
|
|
|
|
|
equality_comparable < rational<IntType>,
|
|
|
|
|
less_than_comparable2 < rational<IntType>, IntType,
|
|
|
|
|
equality_comparable2 < rational<IntType>, IntType,
|
|
|
|
|
addable < rational<IntType>,
|
|
|
|
|
subtractable < rational<IntType>,
|
|
|
|
|
multipliable < rational<IntType>,
|
|
|
|
|
dividable < rational<IntType>,
|
|
|
|
|
addable2 < rational<IntType>, IntType,
|
|
|
|
|
subtractable2 < rational<IntType>, IntType,
|
|
|
|
|
subtractable2_left < rational<IntType>, IntType,
|
|
|
|
|
multipliable2 < rational<IntType>, IntType,
|
|
|
|
|
dividable2 < rational<IntType>, IntType,
|
|
|
|
|
dividable2_left < rational<IntType>, IntType,
|
|
|
|
|
incrementable < rational<IntType>,
|
|
|
|
|
decrementable < rational<IntType>
|
|
|
|
|
> > > > > > > > > > > > > > > >
|
|
|
|
|
{
|
|
|
|
|
// Class-wide pre-conditions
|
|
|
|
|
BOOST_STATIC_ASSERT( ::std::numeric_limits<IntType>::is_specialized );
|
|
|
|
|
|
|
|
|
|
// Helper types
|
|
|
|
|
typedef typename boost::call_traits<IntType>::param_type param_type;
|
|
|
|
|
|
|
|
|
|
struct helper { IntType parts[2]; };
|
|
|
|
|
typedef IntType (helper::* bool_type)[2];
|
|
|
|
|
|
|
|
|
|
public:
|
|
|
|
|
typedef IntType int_type;
|
|
|
|
|
rational() : num(0), den(1) {}
|
|
|
|
|
rational(param_type n) : num(n), den(1) {}
|
|
|
|
|
rational(param_type n, param_type d) : num(n), den(d) { normalize(); }
|
|
|
|
|
|
|
|
|
|
// Default copy constructor and assignment are fine
|
|
|
|
|
|
|
|
|
|
// Add assignment from IntType
|
|
|
|
|
rational& operator=(param_type n) { return assign(n, 1); }
|
|
|
|
|
|
|
|
|
|
// Assign in place
|
|
|
|
|
rational& assign(param_type n, param_type d);
|
|
|
|
|
|
|
|
|
|
// Access to representation
|
|
|
|
|
IntType numerator() const { return num; }
|
|
|
|
|
IntType denominator() const { return den; }
|
|
|
|
|
|
|
|
|
|
// Arithmetic assignment operators
|
|
|
|
|
rational& operator+= (const rational& r);
|
|
|
|
|
rational& operator-= (const rational& r);
|
|
|
|
|
rational& operator*= (const rational& r);
|
|
|
|
|
rational& operator/= (const rational& r);
|
|
|
|
|
|
|
|
|
|
rational& operator+= (param_type i);
|
|
|
|
|
rational& operator-= (param_type i);
|
|
|
|
|
rational& operator*= (param_type i);
|
|
|
|
|
rational& operator/= (param_type i);
|
|
|
|
|
|
|
|
|
|
// Increment and decrement
|
|
|
|
|
const rational& operator++();
|
|
|
|
|
const rational& operator--();
|
|
|
|
|
|
|
|
|
|
// Operator not
|
|
|
|
|
bool operator!() const { return !num; }
|
|
|
|
|
|
|
|
|
|
// Boolean conversion
|
|
|
|
|
|
|
|
|
|
#if BOOST_WORKAROUND(__MWERKS__,<=0x3003)
|
|
|
|
|
// The "ISO C++ Template Parser" option in CW 8.3 chokes on the
|
|
|
|
|
// following, hence we selectively disable that option for the
|
|
|
|
|
// offending memfun.
|
|
|
|
|
#pragma parse_mfunc_templ off
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
operator bool_type() const { return operator !() ? 0 : &helper::parts; }
|
|
|
|
|
|
|
|
|
|
#if BOOST_WORKAROUND(__MWERKS__,<=0x3003)
|
|
|
|
|
#pragma parse_mfunc_templ reset
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
// Comparison operators
|
|
|
|
|
bool operator< (const rational& r) const;
|
|
|
|
|
bool operator== (const rational& r) const;
|
|
|
|
|
|
|
|
|
|
bool operator< (param_type i) const;
|
|
|
|
|
bool operator> (param_type i) const;
|
|
|
|
|
bool operator== (param_type i) const;
|
|
|
|
|
|
|
|
|
|
private:
|
|
|
|
|
// Implementation - numerator and denominator (normalized).
|
|
|
|
|
// Other possibilities - separate whole-part, or sign, fields?
|
|
|
|
|
IntType num;
|
|
|
|
|
IntType den;
|
|
|
|
|
|
|
|
|
|
// Representation note: Fractions are kept in normalized form at all
|
|
|
|
|
// times. normalized form is defined as gcd(num,den) == 1 and den > 0.
|
|
|
|
|
// In particular, note that the implementation of abs() below relies
|
|
|
|
|
// on den always being positive.
|
|
|
|
|
bool test_invariant() const;
|
|
|
|
|
void normalize();
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
// Assign in place
|
|
|
|
|
template <typename IntType>
|
|
|
|
|
inline rational<IntType>& rational<IntType>::assign(param_type n, param_type d)
|
|
|
|
|
{
|
|
|
|
|
num = n;
|
|
|
|
|
den = d;
|
|
|
|
|
normalize();
|
|
|
|
|
return *this;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Unary plus and minus
|
|
|
|
|
template <typename IntType>
|
|
|
|
|
inline rational<IntType> operator+ (const rational<IntType>& r)
|
|
|
|
|
{
|
|
|
|
|
return r;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template <typename IntType>
|
|
|
|
|
inline rational<IntType> operator- (const rational<IntType>& r)
|
|
|
|
|
{
|
|
|
|
|
return rational<IntType>(-r.numerator(), r.denominator());
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Arithmetic assignment operators
|
|
|
|
|
template <typename IntType>
|
|
|
|
|
rational<IntType>& rational<IntType>::operator+= (const rational<IntType>& r)
|
|
|
|
|
{
|
|
|
|
|
// This calculation avoids overflow, and minimises the number of expensive
|
|
|
|
|
// calculations. Thanks to Nickolay Mladenov for this algorithm.
|
|
|
|
|
//
|
|
|
|
|
// Proof:
|
|
|
|
|
// We have to compute a/b + c/d, where gcd(a,b)=1 and gcd(b,c)=1.
|
|
|
|
|
// Let g = gcd(b,d), and b = b1*g, d=d1*g. Then gcd(b1,d1)=1
|
|
|
|
|
//
|
|
|
|
|
// The result is (a*d1 + c*b1) / (b1*d1*g).
|
|
|
|
|
// Now we have to normalize this ratio.
|
|
|
|
|
// Let's assume h | gcd((a*d1 + c*b1), (b1*d1*g)), and h > 1
|
|
|
|
|
// If h | b1 then gcd(h,d1)=1 and hence h|(a*d1+c*b1) => h|a.
|
|
|
|
|
// But since gcd(a,b1)=1 we have h=1.
|
|
|
|
|
// Similarly h|d1 leads to h=1.
|
|
|
|
|
// So we have that h | gcd((a*d1 + c*b1) , (b1*d1*g)) => h|g
|
|
|
|
|
// Finally we have gcd((a*d1 + c*b1), (b1*d1*g)) = gcd((a*d1 + c*b1), g)
|
|
|
|
|
// Which proves that instead of normalizing the result, it is better to
|
|
|
|
|
// divide num and den by gcd((a*d1 + c*b1), g)
|
|
|
|
|
|
|
|
|
|
// Protect against self-modification
|
|
|
|
|
IntType r_num = r.num;
|
|
|
|
|
IntType r_den = r.den;
|
|
|
|
|
|
|
|
|
|
IntType g = math::gcd(den, r_den);
|
|
|
|
|
den /= g; // = b1 from the calculations above
|
|
|
|
|
num = num * (r_den / g) + r_num * den;
|
|
|
|
|
g = math::gcd(num, g);
|
|
|
|
|
num /= g;
|
|
|
|
|
den *= r_den/g;
|
|
|
|
|
|
|
|
|
|
return *this;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template <typename IntType>
|
|
|
|
|
rational<IntType>& rational<IntType>::operator-= (const rational<IntType>& r)
|
|
|
|
|
{
|
|
|
|
|
// Protect against self-modification
|
|
|
|
|
IntType r_num = r.num;
|
|
|
|
|
IntType r_den = r.den;
|
|
|
|
|
|
|
|
|
|
// This calculation avoids overflow, and minimises the number of expensive
|
|
|
|
|
// calculations. It corresponds exactly to the += case above
|
|
|
|
|
IntType g = math::gcd(den, r_den);
|
|
|
|
|
den /= g;
|
|
|
|
|
num = num * (r_den / g) - r_num * den;
|
|
|
|
|
g = math::gcd(num, g);
|
|
|
|
|
num /= g;
|
|
|
|
|
den *= r_den/g;
|
|
|
|
|
|
|
|
|
|
return *this;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template <typename IntType>
|
|
|
|
|
rational<IntType>& rational<IntType>::operator*= (const rational<IntType>& r)
|
|
|
|
|
{
|
|
|
|
|
// Protect against self-modification
|
|
|
|
|
IntType r_num = r.num;
|
|
|
|
|
IntType r_den = r.den;
|
|
|
|
|
|
|
|
|
|
// Avoid overflow and preserve normalization
|
|
|
|
|
IntType gcd1 = math::gcd(num, r_den);
|
|
|
|
|
IntType gcd2 = math::gcd(r_num, den);
|
|
|
|
|
num = (num/gcd1) * (r_num/gcd2);
|
|
|
|
|
den = (den/gcd2) * (r_den/gcd1);
|
|
|
|
|
return *this;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template <typename IntType>
|
|
|
|
|
rational<IntType>& rational<IntType>::operator/= (const rational<IntType>& r)
|
|
|
|
|
{
|
|
|
|
|
// Protect against self-modification
|
|
|
|
|
IntType r_num = r.num;
|
|
|
|
|
IntType r_den = r.den;
|
|
|
|
|
|
|
|
|
|
// Avoid repeated construction
|
|
|
|
|
IntType zero(0);
|
|
|
|
|
|
|
|
|
|
// Trap division by zero
|
|
|
|
|
if (r_num == zero)
|
|
|
|
|
throw bad_rational();
|
|
|
|
|
if (num == zero)
|
|
|
|
|
return *this;
|
|
|
|
|
|
|
|
|
|
// Avoid overflow and preserve normalization
|
|
|
|
|
IntType gcd1 = math::gcd(num, r_num);
|
|
|
|
|
IntType gcd2 = math::gcd(r_den, den);
|
|
|
|
|
num = (num/gcd1) * (r_den/gcd2);
|
|
|
|
|
den = (den/gcd2) * (r_num/gcd1);
|
|
|
|
|
|
|
|
|
|
if (den < zero) {
|
|
|
|
|
num = -num;
|
|
|
|
|
den = -den;
|
|
|
|
|
}
|
|
|
|
|
return *this;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Mixed-mode operators
|
|
|
|
|
template <typename IntType>
|
|
|
|
|
inline rational<IntType>&
|
|
|
|
|
rational<IntType>::operator+= (param_type i)
|
|
|
|
|
{
|
|
|
|
|
return operator+= (rational<IntType>(i));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template <typename IntType>
|
|
|
|
|
inline rational<IntType>&
|
|
|
|
|
rational<IntType>::operator-= (param_type i)
|
|
|
|
|
{
|
|
|
|
|
return operator-= (rational<IntType>(i));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template <typename IntType>
|
|
|
|
|
inline rational<IntType>&
|
|
|
|
|
rational<IntType>::operator*= (param_type i)
|
|
|
|
|
{
|
|
|
|
|
return operator*= (rational<IntType>(i));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template <typename IntType>
|
|
|
|
|
inline rational<IntType>&
|
|
|
|
|
rational<IntType>::operator/= (param_type i)
|
|
|
|
|
{
|
|
|
|
|
return operator/= (rational<IntType>(i));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Increment and decrement
|
|
|
|
|
template <typename IntType>
|
|
|
|
|
inline const rational<IntType>& rational<IntType>::operator++()
|
|
|
|
|
{
|
|
|
|
|
// This can never denormalise the fraction
|
|
|
|
|
num += den;
|
|
|
|
|
return *this;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template <typename IntType>
|
|
|
|
|
inline const rational<IntType>& rational<IntType>::operator--()
|
|
|
|
|
{
|
|
|
|
|
// This can never denormalise the fraction
|
|
|
|
|
num -= den;
|
|
|
|
|
return *this;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Comparison operators
|
|
|
|
|
template <typename IntType>
|
|
|
|
|
bool rational<IntType>::operator< (const rational<IntType>& r) const
|
|
|
|
|
{
|
|
|
|
|
// Avoid repeated construction
|
|
|
|
|
int_type const zero( 0 );
|
|
|
|
|
|
|
|
|
|
// This should really be a class-wide invariant. The reason for these
|
|
|
|
|
// checks is that for 2's complement systems, INT_MIN has no corresponding
|
|
|
|
|
// positive, so negating it during normalization keeps it INT_MIN, which
|
|
|
|
|
// is bad for later calculations that assume a positive denominator.
|
|
|
|
|
BOOST_ASSERT( this->den > zero );
|
|
|
|
|
BOOST_ASSERT( r.den > zero );
|
|
|
|
|
|
|
|
|
|
// Determine relative order by expanding each value to its simple continued
|
|
|
|
|
// fraction representation using the Euclidian GCD algorithm.
|
|
|
|
|
struct { int_type n, d, q, r; } ts = { this->num, this->den, this->num /
|
|
|
|
|
this->den, this->num % this->den }, rs = { r.num, r.den, r.num / r.den,
|
|
|
|
|
r.num % r.den };
|
|
|
|
|
unsigned reverse = 0u;
|
|
|
|
|
|
|
|
|
|
// Normalize negative moduli by repeatedly adding the (positive) denominator
|
|
|
|
|
// and decrementing the quotient. Later cycles should have all positive
|
|
|
|
|
// values, so this only has to be done for the first cycle. (The rules of
|
|
|
|
|
// C++ require a nonnegative quotient & remainder for a nonnegative dividend
|
|
|
|
|
// & positive divisor.)
|
|
|
|
|
while ( ts.r < zero ) { ts.r += ts.d; --ts.q; }
|
|
|
|
|
while ( rs.r < zero ) { rs.r += rs.d; --rs.q; }
|
|
|
|
|
|
|
|
|
|
// Loop through and compare each variable's continued-fraction components
|
|
|
|
|
while ( true )
|
|
|
|
|
{
|
|
|
|
|
// The quotients of the current cycle are the continued-fraction
|
|
|
|
|
// components. Comparing two c.f. is comparing their sequences,
|
|
|
|
|
// stopping at the first difference.
|
|
|
|
|
if ( ts.q != rs.q )
|
|
|
|
|
{
|
|
|
|
|
// Since reciprocation changes the relative order of two variables,
|
|
|
|
|
// and c.f. use reciprocals, the less/greater-than test reverses
|
|
|
|
|
// after each index. (Start w/ non-reversed @ whole-number place.)
|
|
|
|
|
return reverse ? ts.q > rs.q : ts.q < rs.q;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Prepare the next cycle
|
|
|
|
|
reverse ^= 1u;
|
|
|
|
|
|
|
|
|
|
if ( (ts.r == zero) || (rs.r == zero) )
|
|
|
|
|
{
|
|
|
|
|
// At least one variable's c.f. expansion has ended
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
ts.n = ts.d; ts.d = ts.r;
|
|
|
|
|
ts.q = ts.n / ts.d; ts.r = ts.n % ts.d;
|
|
|
|
|
rs.n = rs.d; rs.d = rs.r;
|
|
|
|
|
rs.q = rs.n / rs.d; rs.r = rs.n % rs.d;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Compare infinity-valued components for otherwise equal sequences
|
|
|
|
|
if ( ts.r == rs.r )
|
|
|
|
|
{
|
|
|
|
|
// Both remainders are zero, so the next (and subsequent) c.f.
|
|
|
|
|
// components for both sequences are infinity. Therefore, the sequences
|
|
|
|
|
// and their corresponding values are equal.
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
// Exactly one of the remainders is zero, so all following c.f.
|
|
|
|
|
// components of that variable are infinity, while the other variable
|
|
|
|
|
// has a finite next c.f. component. So that other variable has the
|
|
|
|
|
// lesser value (modulo the reversal flag!).
|
|
|
|
|
return ( ts.r != zero ) != static_cast<bool>( reverse );
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template <typename IntType>
|
|
|
|
|
bool rational<IntType>::operator< (param_type i) const
|
|
|
|
|
{
|
|
|
|
|
// Avoid repeated construction
|
|
|
|
|
int_type const zero( 0 );
|
|
|
|
|
|
|
|
|
|
// Break value into mixed-fraction form, w/ always-nonnegative remainder
|
|
|
|
|
BOOST_ASSERT( this->den > zero );
|
|
|
|
|
int_type q = this->num / this->den, r = this->num % this->den;
|
|
|
|
|
while ( r < zero ) { r += this->den; --q; }
|
|
|
|
|
|
|
|
|
|
// Compare with just the quotient, since the remainder always bumps the
|
|
|
|
|
// value up. [Since q = floor(n/d), and if n/d < i then q < i, if n/d == i
|
|
|
|
|
// then q == i, if n/d == i + r/d then q == i, and if n/d >= i + 1 then
|
|
|
|
|
// q >= i + 1 > i; therefore n/d < i iff q < i.]
|
|
|
|
|
return q < i;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template <typename IntType>
|
|
|
|
|
bool rational<IntType>::operator> (param_type i) const
|
|
|
|
|
{
|
|
|
|
|
// Trap equality first
|
|
|
|
|
if (num == i && den == IntType(1))
|
|
|
|
|
return false;
|
|
|
|
|
|
|
|
|
|
// Otherwise, we can use operator<
|
|
|
|
|
return !operator<(i);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template <typename IntType>
|
|
|
|
|
inline bool rational<IntType>::operator== (const rational<IntType>& r) const
|
|
|
|
|
{
|
|
|
|
|
return ((num == r.num) && (den == r.den));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template <typename IntType>
|
|
|
|
|
inline bool rational<IntType>::operator== (param_type i) const
|
|
|
|
|
{
|
|
|
|
|
return ((den == IntType(1)) && (num == i));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Invariant check
|
|
|
|
|
template <typename IntType>
|
|
|
|
|
inline bool rational<IntType>::test_invariant() const
|
|
|
|
|
{
|
|
|
|
|
return ( this->den > int_type(0) ) && ( math::gcd(this->num, this->den) ==
|
|
|
|
|
int_type(1) );
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Normalisation
|
|
|
|
|
template <typename IntType>
|
|
|
|
|
void rational<IntType>::normalize()
|
|
|
|
|
{
|
|
|
|
|
// Avoid repeated construction
|
|
|
|
|
IntType zero(0);
|
|
|
|
|
|
|
|
|
|
if (den == zero)
|
|
|
|
|
throw bad_rational();
|
|
|
|
|
|
|
|
|
|
// Handle the case of zero separately, to avoid division by zero
|
|
|
|
|
if (num == zero) {
|
|
|
|
|
den = IntType(1);
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
IntType g = math::gcd(num, den);
|
|
|
|
|
|
|
|
|
|
num /= g;
|
|
|
|
|
den /= g;
|
|
|
|
|
|
|
|
|
|
// Ensure that the denominator is positive
|
|
|
|
|
if (den < zero) {
|
|
|
|
|
num = -num;
|
|
|
|
|
den = -den;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
BOOST_ASSERT( this->test_invariant() );
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
namespace detail {
|
|
|
|
|
|
|
|
|
|
// A utility class to reset the format flags for an istream at end
|
|
|
|
|
// of scope, even in case of exceptions
|
|
|
|
|
struct resetter {
|
|
|
|
|
resetter(std::istream& is) : is_(is), f_(is.flags()) {}
|
|
|
|
|
~resetter() { is_.flags(f_); }
|
|
|
|
|
std::istream& is_;
|
|
|
|
|
std::istream::fmtflags f_; // old GNU c++ lib has no ios_base
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Input and output
|
|
|
|
|
template <typename IntType>
|
|
|
|
|
std::istream& operator>> (std::istream& is, rational<IntType>& r)
|
|
|
|
|
{
|
|
|
|
|
IntType n = IntType(0), d = IntType(1);
|
|
|
|
|
char c = 0;
|
|
|
|
|
detail::resetter sentry(is);
|
|
|
|
|
|
|
|
|
|
is >> n;
|
|
|
|
|
c = is.get();
|
|
|
|
|
|
|
|
|
|
if (c != '/')
|
|
|
|
|
is.clear(std::istream::badbit); // old GNU c++ lib has no ios_base
|
|
|
|
|
|
|
|
|
|
#if !defined(__GNUC__) || (defined(__GNUC__) && (__GNUC__ >= 3)) || defined __SGI_STL_PORT
|
|
|
|
|
is >> std::noskipws;
|
|
|
|
|
#else
|
|
|
|
|
is.unsetf(ios::skipws); // compiles, but seems to have no effect.
|
|
|
|
|
#endif
|
|
|
|
|
is >> d;
|
|
|
|
|
|
|
|
|
|
if (is)
|
|
|
|
|
r.assign(n, d);
|
|
|
|
|
|
|
|
|
|
return is;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Add manipulators for output format?
|
|
|
|
|
template <typename IntType>
|
|
|
|
|
std::ostream& operator<< (std::ostream& os, const rational<IntType>& r)
|
|
|
|
|
{
|
|
|
|
|
os << r.numerator() << '/' << r.denominator();
|
|
|
|
|
return os;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Type conversion
|
|
|
|
|
template <typename T, typename IntType>
|
|
|
|
|
inline T rational_cast(
|
|
|
|
|
const rational<IntType>& src BOOST_APPEND_EXPLICIT_TEMPLATE_TYPE(T))
|
|
|
|
|
{
|
|
|
|
|
return static_cast<T>(src.numerator())/static_cast<T>(src.denominator());
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Do not use any abs() defined on IntType - it isn't worth it, given the
|
|
|
|
|
// difficulties involved (Koenig lookup required, there may not *be* an abs()
|
|
|
|
|
// defined, etc etc).
|
|
|
|
|
template <typename IntType>
|
|
|
|
|
inline rational<IntType> abs(const rational<IntType>& r)
|
|
|
|
|
{
|
|
|
|
|
if (r.numerator() >= IntType(0))
|
|
|
|
|
return r;
|
|
|
|
|
|
|
|
|
|
return rational<IntType>(-r.numerator(), r.denominator());
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
} // namespace boost
|
|
|
|
|
|
|
|
|
|
#endif // BOOST_RATIONAL_HPP
|
|
|
|
|
|