You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
191 lines
4.0 KiB
C
191 lines
4.0 KiB
C
12 years ago
|
#include <stdio.h>
|
||
|
#include <ctype.h>
|
||
|
#include <stdlib.h>
|
||
|
#include <string.h>
|
||
|
#include "svm.h"
|
||
|
|
||
|
char* line;
|
||
|
int max_line_len = 1024;
|
||
|
struct svm_node *x;
|
||
|
int max_nr_attr = 64;
|
||
|
|
||
|
struct svm_model* model;
|
||
|
int predict_probability=0;
|
||
|
|
||
|
void predict(FILE *input, FILE *output)
|
||
|
{
|
||
|
int correct = 0;
|
||
|
int total = 0;
|
||
|
double error = 0;
|
||
|
double sumv = 0, sumy = 0, sumvv = 0, sumyy = 0, sumvy = 0;
|
||
|
|
||
|
int svm_type=svm_get_svm_type(model);
|
||
|
int nr_class=svm_get_nr_class(model);
|
||
|
double *prob_estimates=NULL;
|
||
|
int j;
|
||
|
|
||
|
if(predict_probability)
|
||
|
{
|
||
|
if (svm_type==NU_SVR || svm_type==EPSILON_SVR)
|
||
|
printf("Prob. model for test data: target value = predicted value + z,\nz: Laplace distribution e^(-|z|/sigma)/(2sigma),sigma=%g\n",svm_get_svr_probability(model));
|
||
|
else
|
||
|
{
|
||
|
int *labels=(int *) malloc(nr_class*sizeof(int));
|
||
|
svm_get_labels(model,labels);
|
||
|
prob_estimates = (double *) malloc(nr_class*sizeof(double));
|
||
|
fprintf(output,"labels");
|
||
|
for(j=0;j<nr_class;j++)
|
||
|
fprintf(output," %d",labels[j]);
|
||
|
fprintf(output,"\n");
|
||
|
free(labels);
|
||
|
}
|
||
|
}
|
||
|
while(1)
|
||
|
{
|
||
|
int i = 0;
|
||
|
int c;
|
||
|
double target,v;
|
||
|
|
||
|
if (fscanf(input,"%lf",&target)==EOF)
|
||
|
break;
|
||
|
|
||
|
while(1)
|
||
|
{
|
||
|
if(i>=max_nr_attr-1) // need one more for index = -1
|
||
|
{
|
||
|
max_nr_attr *= 2;
|
||
|
x = (struct svm_node *) realloc(x,max_nr_attr*sizeof(struct svm_node));
|
||
|
}
|
||
|
|
||
|
do {
|
||
|
c = getc(input);
|
||
|
if(c=='\n' || c==EOF) goto out2;
|
||
|
} while(isspace(c));
|
||
|
ungetc(c,input);
|
||
|
if (fscanf(input,"%d:%lf",&x[i].index,&x[i].value) < 2)
|
||
|
{
|
||
|
fprintf(stderr,"Wrong input format at line %d\n", total+1);
|
||
|
exit(1);
|
||
|
}
|
||
|
++i;
|
||
|
}
|
||
|
|
||
|
out2:
|
||
|
x[i].index = -1;
|
||
|
|
||
|
if (predict_probability && (svm_type==C_SVC || svm_type==NU_SVC))
|
||
|
{
|
||
|
v = svm_predict_probability(model,x,prob_estimates);
|
||
|
fprintf(output,"%g ",v);
|
||
|
for(j=0;j<nr_class;j++)
|
||
|
fprintf(output,"%g ",prob_estimates[j]);
|
||
|
fprintf(output,"\n");
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
v = svm_predict(model,x);
|
||
|
fprintf(output,"%g\n",v);
|
||
|
}
|
||
|
|
||
|
if(v == target)
|
||
|
++correct;
|
||
|
error += (v-target)*(v-target);
|
||
|
sumv += v;
|
||
|
sumy += target;
|
||
|
sumvv += v*v;
|
||
|
sumyy += target*target;
|
||
|
sumvy += v*target;
|
||
|
++total;
|
||
|
}
|
||
|
if (svm_type==NU_SVR || svm_type==EPSILON_SVR)
|
||
|
{
|
||
|
printf("Mean squared error = %g (regression)\n",error/total);
|
||
|
printf("Squared correlation coefficient = %g (regression)\n",
|
||
|
((total*sumvy-sumv*sumy)*(total*sumvy-sumv*sumy))/
|
||
|
((total*sumvv-sumv*sumv)*(total*sumyy-sumy*sumy))
|
||
|
);
|
||
|
}
|
||
|
else
|
||
|
printf("Accuracy = %g%% (%d/%d) (classification)\n",
|
||
|
(double)correct/total*100,correct,total);
|
||
|
if(predict_probability)
|
||
|
free(prob_estimates);
|
||
|
}
|
||
|
|
||
|
void exit_with_help()
|
||
|
{
|
||
|
printf(
|
||
|
"Usage: svm-predict [options] test_file model_file output_file\n"
|
||
|
"options:\n"
|
||
|
"-b probability_estimates: whether to predict probability estimates, 0 or 1 (default 0); for one-class SVM only 0 is supported\n"
|
||
|
);
|
||
|
exit(1);
|
||
|
}
|
||
|
|
||
|
int main(int argc, char **argv)
|
||
|
{
|
||
|
FILE *input, *output;
|
||
|
int i;
|
||
|
|
||
|
// parse options
|
||
|
for(i=1;i<argc;i++)
|
||
|
{
|
||
|
if(argv[i][0] != '-') break;
|
||
|
++i;
|
||
|
switch(argv[i-1][1])
|
||
|
{
|
||
|
case 'b':
|
||
|
predict_probability = atoi(argv[i]);
|
||
|
break;
|
||
|
default:
|
||
|
fprintf(stderr,"unknown option\n");
|
||
|
exit_with_help();
|
||
|
}
|
||
|
}
|
||
|
if(i>=argc)
|
||
|
exit_with_help();
|
||
|
|
||
|
input = fopen(argv[i],"r");
|
||
|
if(input == NULL)
|
||
|
{
|
||
|
fprintf(stderr,"can't open input file %s\n",argv[i]);
|
||
|
exit(1);
|
||
|
}
|
||
|
|
||
|
output = fopen(argv[i+2],"w");
|
||
|
if(output == NULL)
|
||
|
{
|
||
|
fprintf(stderr,"can't open output file %s\n",argv[i+2]);
|
||
|
exit(1);
|
||
|
}
|
||
|
|
||
|
if((model=svm_load_model(argv[i+1]))==0)
|
||
|
{
|
||
|
fprintf(stderr,"can't open model file %s\n",argv[i+1]);
|
||
|
exit(1);
|
||
|
}
|
||
|
|
||
|
line = (char *) malloc(max_line_len*sizeof(char));
|
||
|
x = (struct svm_node *) malloc(max_nr_attr*sizeof(struct svm_node));
|
||
|
if(predict_probability)
|
||
|
{
|
||
|
if(svm_check_probability_model(model)==0)
|
||
|
{
|
||
|
fprintf(stderr,"Model does not support probabiliy estimates\n");
|
||
|
exit(1);
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
if(svm_check_probability_model(model)!=0)
|
||
|
printf("Model supports probability estimates, but disabled in prediction.\n");
|
||
|
}
|
||
|
predict(input,output);
|
||
|
svm_destroy_model(model);
|
||
|
free(line);
|
||
|
free(x);
|
||
|
fclose(input);
|
||
|
fclose(output);
|
||
|
return 0;
|
||
|
}
|