Libsvm is a simple, easy-to-use, and efficient software for SVM classification and regression. It solves C-SVM classification, nu-SVM classification, one-class-SVM, epsilon-SVM regression, and nu-SVM regression. It also provides an automatic model selection tool for C-SVM classification. This document explains the use of libsvm. Libsvm is available at http://www.csie.ntu.edu.tw/~cjlin/libsvm Please read the COPYRIGHT file before using libsvm. Table of Contents ================= - Quick Start - Installation and Data Format - `svm-train' Usage - `svm-predict' Usage - `svm-scale' Usage - Tips on Practical Use - Examples - Precomputed Kernels - Library Usage - Java Version - Building Windows Binaries - Additional Tools: Sub-sampling, Parameter Selection, Format checking, etc. - Python Interface - Additional Information Quick Start =========== If you are new to SVM and if the data is not large, please go to `tools' directory and use easy.py after installation. It does everything automatic -- from data scaling to parameter selection. Usage: easy.py training_file [testing_file] More information about parameter selection can be found in `tools/README.' Installation and Data Format ============================ On Unix systems, type `make' to build the `svm-train' and `svm-predict' programs. Run them without arguments to show the usages of them. On other systems, consult `Makefile' to build them (e.g., see 'Building Windows binaries' in this file) or use the pre-built binaries (Windows binaries are in the directory `windows'). The format of training and testing data file is: