You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

323 lines
7.2 KiB
C

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include "svm.h"
#define Malloc(type,n) (type *)malloc((n)*sizeof(type))
void exit_with_help()
{
printf(
"Usage: svm-train [options] training_set_file [model_file]\n"
"options:\n"
"-s svm_type : set type of SVM (default 0)\n"
" 0 -- C-SVC\n"
" 1 -- nu-SVC\n"
" 2 -- one-class SVM\n"
" 3 -- epsilon-SVR\n"
" 4 -- nu-SVR\n"
"-t kernel_type : set type of kernel function (default 2)\n"
" 0 -- linear: u'*v\n"
" 1 -- polynomial: (gamma*u'*v + coef0)^degree\n"
" 2 -- radial basis function: exp(-gamma*|u-v|^2)\n"
" 3 -- sigmoid: tanh(gamma*u'*v + coef0)\n"
" 4 -- precomputed kernel (kernel values in training_set_file)\n"
"-d degree : set degree in kernel function (default 3)\n"
"-g gamma : set gamma in kernel function (default 1/k)\n"
"-r coef0 : set coef0 in kernel function (default 0)\n"
"-c cost : set the parameter C of C-SVC, epsilon-SVR, and nu-SVR (default 1)\n"
"-n nu : set the parameter nu of nu-SVC, one-class SVM, and nu-SVR (default 0.5)\n"
"-p epsilon : set the epsilon in loss function of epsilon-SVR (default 0.1)\n"
"-m cachesize : set cache memory size in MB (default 100)\n"
"-e epsilon : set tolerance of termination criterion (default 0.001)\n"
"-h shrinking: whether to use the shrinking heuristics, 0 or 1 (default 1)\n"
"-b probability_estimates: whether to train a SVC or SVR model for probability estimates, 0 or 1 (default 0)\n"
"-wi weight: set the parameter C of class i to weight*C, for C-SVC (default 1)\n"
"-v n: n-fold cross validation mode\n"
);
exit(1);
}
void parse_command_line(int argc, char **argv, char *input_file_name, char *model_file_name);
void read_problem(const char *filename);
void do_cross_validation();
struct svm_parameter param; // set by parse_command_line
struct svm_problem prob; // set by read_problem
struct svm_model *model;
struct svm_node *x_space;
int cross_validation;
int nr_fold;
int main(int argc, char **argv)
{
char input_file_name[1024];
char model_file_name[1024];
const char *error_msg;
parse_command_line(argc, argv, input_file_name, model_file_name);
read_problem(input_file_name);
error_msg = svm_check_parameter(&prob,&param);
if(error_msg)
{
fprintf(stderr,"Error: %s\n",error_msg);
exit(1);
}
if(cross_validation)
{
do_cross_validation();
}
else
{
model = svm_train(&prob,&param);
svm_save_model(model_file_name,model);
svm_destroy_model(model);
}
svm_destroy_param(&param);
free(prob.y);
free(prob.x);
free(x_space);
return 0;
}
void do_cross_validation()
{
int i;
int total_correct = 0;
double total_error = 0;
double sumv = 0, sumy = 0, sumvv = 0, sumyy = 0, sumvy = 0;
double *target = Malloc(double,prob.l);
svm_cross_validation(&prob,&param,nr_fold,target);
if(param.svm_type == EPSILON_SVR ||
param.svm_type == NU_SVR)
{
for(i=0;i<prob.l;i++)
{
double y = prob.y[i];
double v = target[i];
total_error += (v-y)*(v-y);
sumv += v;
sumy += y;
sumvv += v*v;
sumyy += y*y;
sumvy += v*y;
}
printf("Cross Validation Mean squared error = %g\n",total_error/prob.l);
printf("Cross Validation Squared correlation coefficient = %g\n",
((prob.l*sumvy-sumv*sumy)*(prob.l*sumvy-sumv*sumy))/
((prob.l*sumvv-sumv*sumv)*(prob.l*sumyy-sumy*sumy))
);
}
else
{
for(i=0;i<prob.l;i++)
if(target[i] == prob.y[i])
++total_correct;
printf("Cross Validation Accuracy = %g%%\n",100.0*total_correct/prob.l);
}
free(target);
}
void parse_command_line(int argc, char **argv, char *input_file_name, char *model_file_name)
{
int i;
// default values
param.svm_type = C_SVC;
param.kernel_type = RBF;
param.degree = 3;
param.gamma = 0; // 1/k
param.coef0 = 0;
param.nu = 0.5;
param.cache_size = 100;
param.C = 1;
param.eps = 1e-3;
param.p = 0.1;
param.shrinking = 1;
param.probability = 0;
param.nr_weight = 0;
param.weight_label = NULL;
param.weight = NULL;
cross_validation = 0;
// parse options
for(i=1;i<argc;i++)
{
if(argv[i][0] != '-') break;
if(++i>=argc)
exit_with_help();
switch(argv[i-1][1])
{
case 's':
param.svm_type = atoi(argv[i]);
break;
case 't':
param.kernel_type = atoi(argv[i]);
break;
case 'd':
param.degree = atoi(argv[i]);
break;
case 'g':
param.gamma = atof(argv[i]);
break;
case 'r':
param.coef0 = atof(argv[i]);
break;
case 'n':
param.nu = atof(argv[i]);
break;
case 'm':
param.cache_size = atof(argv[i]);
break;
case 'c':
param.C = atof(argv[i]);
break;
case 'e':
param.eps = atof(argv[i]);
break;
case 'p':
param.p = atof(argv[i]);
break;
case 'h':
param.shrinking = atoi(argv[i]);
break;
case 'b':
param.probability = atoi(argv[i]);
break;
case 'v':
cross_validation = 1;
nr_fold = atoi(argv[i]);
if(nr_fold < 2)
{
fprintf(stderr,"n-fold cross validation: n must >= 2\n");
exit_with_help();
}
break;
case 'w':
++param.nr_weight;
param.weight_label = (int *)realloc(param.weight_label,sizeof(int)*param.nr_weight);
param.weight = (double *)realloc(param.weight,sizeof(double)*param.nr_weight);
param.weight_label[param.nr_weight-1] = atoi(&argv[i-1][2]);
param.weight[param.nr_weight-1] = atof(argv[i]);
break;
default:
fprintf(stderr,"unknown option\n");
exit_with_help();
}
}
// determine filenames
if(i>=argc)
exit_with_help();
strcpy(input_file_name, argv[i]);
if(i<argc-1)
strcpy(model_file_name,argv[i+1]);
else
{
char *p = strrchr(argv[i],'/');
if(p==NULL)
p = argv[i];
else
++p;
sprintf(model_file_name,"%s.model",p);
}
}
// read in a problem (in svmlight format)
void read_problem(const char *filename)
{
int elements, max_index, i, j;
FILE *fp = fopen(filename,"r");
if(fp == NULL)
{
fprintf(stderr,"can't open input file %s\n",filename);
exit(1);
}
prob.l = 0;
elements = 0;
while(1)
{
int c = fgetc(fp);
switch(c)
{
case '\n':
++prob.l;
// fall through,
// count the '-1' element
case ':':
++elements;
break;
case EOF:
goto out;
default:
;
}
}
out:
rewind(fp);
prob.y = Malloc(double,prob.l);
prob.x = Malloc(struct svm_node *,prob.l);
x_space = Malloc(struct svm_node,elements);
max_index = 0;
j=0;
for(i=0;i<prob.l;i++)
{
double label;
prob.x[i] = &x_space[j];
fscanf(fp,"%lf",&label);
prob.y[i] = label;
while(1)
{
int c;
do {
c = getc(fp);
if(c=='\n') goto out2;
} while(isspace(c));
ungetc(c,fp);
if (fscanf(fp,"%d:%lf",&(x_space[j].index),&(x_space[j].value)) < 2)
{
fprintf(stderr,"Wrong input format at line %d\n", i+1);
exit(1);
}
++j;
}
out2:
if(j>=1 && x_space[j-1].index > max_index)
max_index = x_space[j-1].index;
x_space[j++].index = -1;
}
if(param.gamma == 0)
param.gamma = 1.0/max_index;
if(param.kernel_type == PRECOMPUTED)
for(i=0;i<prob.l;i++)
{
if (prob.x[i][0].index != 0)
{
fprintf(stderr,"Wrong input format: first column must be 0:sample_serial_number\n");
exit(1);
}
if ((int)prob.x[i][0].value <= 0 || (int)prob.x[i][0].value > max_index)
{
fprintf(stderr,"Wrong input format: sample_serial_number out of range\n");
exit(1);
}
}
fclose(fp);
}